MARL Multi-scale Archetype Representation Learning for Urban Building Energy Modeling

Paper, code and data available

Xinwei Zhuang*, Zixun Huang*, Wentao Zeng, Luisa Caldas xinwei zhuang, zixun, wentao zeng, lcaldas@berkeley.edu * equal contribution

TLDR

We use **image reconstruction-based** framework to **automatically** construct representative building archetypes for building stock with real-world building geometry (footprint) with downstream task (building metadata such as vintage, programme) which has

transferability be applied to any scale, any location.

MOTIVATION

Climate change Urban Building Eenergy Modeling Built environment contributes to 38% carbon emissions

Current archetype for UBEM

- Country/state scale
- Expert-reliant
- Overlook of real-world geometry.
- Computational demands exclude disadvantaged communities.

EXPERIMENTS

Ground truth Integrated Multisector Multiscale Modeling (IMMM)^[2]

Baseline Prototype Building Models^[1]

```
Metrics Accuracy = 1 - \frac{|EC_{est} - Ec_{gt}|}{EC_{qt}}
```


CONTRIBUTION

Prototype Building Models [1]

Automated representative building archetype generation given a building stock **Geometry** integration for building archetypes Methodology innovation: mage reconstruction-based framework.

Downstream task integration with building metadata (vintage, programme) **Transferability**: Model effective in any urban settings.

MARL: Multi-scale Archetype Representation Learning

Cluster 3 ¹/₁ UMAP visualization of auto-generated building archetypes for Region (c)

Single archetype

Archetype offer	ed by	EUI (kWh/m^2)	Building Area (m^2)	Energy (kWh)	Accuracy (%)	
PBM [8]	MFH	75.14	861123.64	1373//567	71.62	
	SFH	60.79	1194889.74	13/344307		
MARI (Ours)	MFH	89.3	861123.64	170530360	93.62	
MARL (Ours)	SFH	85.9	1194889.74	179339309		
MARL + DTP	MFH	92.5	861123.64	1836003/1/	95.74	
(Ours)	SFH	87	1194889.74	103007377		
Energy Consum	ption G7	Γ [27]	2056013.38	191779982	/	
Energy Estimati	on A_{ccu}	racy Boosted by	Our Reconstru	22.00 ↑		
			Our Downstream Task		2.12 ↑	

Multiple archetypes

Dogion	Energy Consumption	PBM [8]	MARL with Only		MARL Restricted by	
Kegioli	GT[27](kWh)	(%)	Reconstruction Task $(\%)$		DTP (%)	
Rncho Palo etc.	191779982	71.62	90.36	18.74 ↑	91.08	18.74 ↑ + 0.72 ↑
Long Beach etc.	104117941	73.10	98.96	25.86 ↑	97.58	25.86 ↑ - 1.37 ↓
Manhattan Beach etc.	121545524	70.51	90.43	19.92 ↑	92.88	$19.92 \uparrow + 2.45 \uparrow$
SUM	417443447	71.66	92.52	20.86 ↑	93.23	$20.86 \uparrow + 0.70 \uparrow$

DATASET

Five neighborhoods in Los Angeles county. Each contains over 6,000 residential buildings (single/multi family).

\Diamond	F	\diamond	\Box		8	В	
5	ß				B		
\diamond		Ŀ	Ð		\diamond		
٩.,	д	\bigcirc		Ł	\Diamond	đ	

Example footprints

Open Set

Region	GT[27]	GT[27] PBM [8] (kWh) $(%)$		MARL+DTP (Ours)			
Region	(kWh)			(kWh)	(%)		
Downey etc.	187349182	144685496	77.23	201129362	92.64	15.42 ↑	
Santa Monica etc.	211891201	151819183	71.65	192191917	90.70	19.05 ↑	
SUM	399240383	296504678	74.27	393321279	98.52	$24.25\uparrow$	

SUMMARY

MARL: Automated, scale-adaptable building archetype construction with representation learning and downstream tasks, integrated with building geometry and building metadata.

Validation & Results: Benchmarked against conventional archetypes, MARL showcases superior energy estimation, especially in unseen neighborhoods.

Implications: Aid architects in making informed decisions on neighborhood configurations and morphologies. Emphasizes locale-specific designs, promoting energy efficiency.

[1] Department of Energy. Prototype building models, 2021. https://www.energycodes.gov/prototype-building-models, Accessed May 25, 2023 [2] Y. Xu, P. Vahmani, A. Jones, and T. Hong. A multi-scale time-series dataset of anthropogenic heat from buildings in Los Angeles county (version v1) [data set]. MSD-LIVE Data Repository, 2022. https://doi.org/10.57931/1892041